처음 Perceptron의 개념을 접한지 벌써 6년이 지났다. 

당시 Single Layer Perceptron (SLP)만 배웠었는데 신경망의 작동원리를 표방한 구조가 마음에 들어 다른 서적까지 뒤져가며 개념을 이해하려고 애썼다. 

 

선형대수도 제대로 알지 못했는데 구조가 단순해서 그런지 수학적으로 완벽하게 개념을 이해할 수 있었다. 

 

과제로 나온 문제 중 하나가 '왜 SLP는 XOR 문제를 풀지 못하는지 설명하라' 였는데 이에 대해서 완벽한 답을 내놓았을 때의 짜릿함이란...

 

4학년때 제출한 과제의 일부

SLP는 그 이후로도 다른 수업이나 특강에서 접할 기회가 많아서 익숙해졌지만 , 아직까지 Multi Layer Perceptron (MLP)를 완벽하게 이해하지 못했다. 수식을 외워서 어찌저찌 코드를 짤 수는 있었지만 왜 저런 수식이 나오는지 개념적으로 설명을 하지 못했다. 

 

지난 코드들을 정리하던 중 짜다 포기한 MLP 코드가 있길래 지금이라면 이해할 수 있지 않을까 하고 도전한 결과, 드디어 오랫동안 끝내지 못한 과제를 해결하게 되었다. 

 

이해한 개념을 잊지 않도록 SLP부터 정리하고 기록하려고 한다. 

 

Single Layer Perceptron

 Perceptron 구성에 필요한 것

  • input node의 수
  • output node의 수
  • 초기 weight 값
  • learning rate
  • epoch 수

먼저 network를 구성하기 위해서 필요한 것은 input node와 output node의 숫자다. 

 

input node의 수 : j
output node의 수 : k

 

일반적으로 "한 개"의 perceptron은 여러 개의 input을 받아서 하나의 output을 출력하는 대상을 말하기에 output node가 k개 있는 위의 예에서는 k개의 perceptron이 하나로 합쳐져 있는 것이라고 생각해야 한다.

 

하나의 Perceptron, 3개의 Perceptron

 

또 필요한 것은 사실상 학습이 일어나는 변수인 weight의 초기값이다. 

 

위와 같이 모든 node 들이 서로 연결된 fully-connect 조건인 경우 input node의 수 x output node의 수 (j x k) 만큼 weight 값이 필요하다. 

 

Output node에서는 이후 input node의 값들을 각각의 weight로 곱해주고 threshold를 넘냐 안넘냐로 output을 바꾸는데 이게 꽤 귀찮다. 

 

왜냐하면 이 threshold를 잘못 정하면 학습이 전혀! 일어나지 않기 때문이다. 

 

그래서 사용하는 방법이 input node가 비록 j개만큼 있지만 항상 1 값을 내놓는 가상의 node를 만들고 weight의 수를 (j x k)가 아닌 (j+1 x k) 로 설정하는 것이다.

 

이러면 모든 output node의 threshold를 0으로 설정해도 이 가상의 node를 통해 threshold 값이 조정된다.

 

이러한 가상의 node를 bias 라고 한다.

 

항상 1의 값을 출력하는 가상의 bias node를 도입하면 threshold를 생각할 필요가 없다.

 

이렇게 하면 나중에 weight update를 할 때 weight 값이 바뀌면서 각각의 node의 threshold가 바뀌게 되고, 각 node 별로 최적의 threshold가 구해질 것이다. 

 

weight matrix : W => (j +1 x k)

 

초기 weight 값을 구하는 것에는 다양한 방법이 있으나 편의상 -1과 1 사이의 무작위 값으로 쓰도록 하자. 

 

마지막으로 매번 학습마다 weight 값을 얼마만큼 바꿀지에 대한 learning rate (보통 0.1 정도면 충분) 와 전체 training sample을 몇번 돌려가며 학습을 시킬지에 대한 epoch ( 일단 100정도) 이 필요하다. 

 

import numpy as np

# Constants
num_input_node = 4
num_output_node = 3
learning_rate = 0.1
num_epoch = 100

# Variables
weights = np.random.rand(num_input_node + 1, num_output_node) * 2 -1
# rand 함수는 0~1 사이 값을 주기에 x2-1을 하면 -1과 1 사이의 값이 나온다.

Feed Forward 계산

j+1개의 값들을 각각의 weight들과 곱한 뒤, 합하는 작업을 총 perceptron의 수인 k번 해야한다. 

 

물론 Method 1처럼 for 문을 두 번 사용하면 해결이 되겠지만 Method 2처럼 코드 한줄로 모든 연산을 끝낼 수 있다. 

 

바로 선형대수를 이용하는 것이다. 

 

# Method 1
for perceptron in range(k):
    for node in range(j+1):
        output_node[perceptron] += weight[node, perceptron] * input_node[node]

# Method 2
output_node = np.dot(weight.T, input_node)

 

대학원 인공지능개론 수업에서는 교수님이 학생들이 전부 선형대수를 완벽히 알고있다고 가정하고 설명을 하시던데 물리/정보계 이과가 아니어서 그런지 나는 고등학교때 행렬 연산 지식이 전부다.

 

이 수업을 따라가려고 선형대수로 유명하다는 Strang 교수님의 선형대수 책 스터디도 진행을 했는데 정작 머릿속에 남아있는 개념은 딱 두 가지이다. 

 

행렬의 곱, dot product와 dot product 에서의 차원 계산

 

1. The dot product (행렬의 곱)

Dot product 계산

k x j 형태의 matrix와 j x 1 형태의 matrix (혹은 columnar vector) 의 Dot product는 위와 같이 계산된다. 

 

복잡해보이지만 좌측 matrix의 한 행의 원소들(총 j개)를 각각 같은 위치에 있는 우측 matrix의 열의 원소들(총 j개)로 곱해준 뒤 이를 전부 합해주면 한 행의 element가 완성이 된다. 

 

어짜피 하는 연산은 for 문 2개를 돌리는 것과 같지만, 이렇게 각각의 원소들을 다른 matrix의 대응하는 원소와 곱한뒤 이를 합하는 연산이 Perceptron 외에도 정말 자주 등장하기에 수학에서 이러한 연산을 dot product라고 따로 정의한 것 같다. 

 

물리에서 벡터 연산이나 간단한 선형 방정식에서도 자주 본 적이 있다. 

 

2. The dimension of the dot product

 

위에 언급한 부분을 잘 보면 두 matrix의 dot product를 구할 때 중요한 조건이 있다. 

 

 

"좌측 matrix의 한 행의 원소들(총 j개)를 각각 같은 위치에 있는 우측 matrix의 열의 원소들(총 j개)로 곱해준 뒤 이를 전부 합해주면 한 행의 element가 완성이 된다."

 

바로 좌측 matrix의 열의 수와 우측 matrix의 행의 수가 일치해야 연산이 가능하다는 것이다.

 

또한 연달아 dot product를 계산하면 최종 결과는 최좌단 matrix의 행의 수 x 최우단 matrix의 열의 수 가 된다. 

 

예를들어, matrix A, B, C가 각각 axb, bxc, cxd 의 차원을 가지고 이들은 전부 곱하면, 최종결과는 a x d가 된다. 

 

이 개념이 아주 중요하다. 

 

끽해야 2-3개의 행과 열로 된 matrix를 다루는 손으로 푸는 문제는 바로 어떻게 연산을 해야할지 보이는데, 수십, 수백개의 행과 열로된 matrix를 컴퓨터로 연산을 할 때는 matrix의 구조가 보이지 않아서 차원이 맞지 않는 오류가 나기 쉽다.

 

그래서 곱해야할 것들을 정하고, 원하는 결과의 차원을 정한뒤, matrix 자체는 보지 않고 matrix의 dimesion만 보면서 코딩을 해나간다.

 

다시 SLP로 돌아가서, 현재 weight은 (j +1 x k)로 되어있고, input node의 수는 j+1. 

 

원하는 연산을 위해서는 weight matrix의 행과 열을 바꾸고 bias를 포함한 input node와 곱해주면 된다. 

 

참고로 이렇게 행과 열을 바꿔주는 행위를 transpose 라고 하고 위에 작은 T 첨자를 붙인다.

 

W위의 작은 T 기호는 matrix를 행과 열을 바꿔서 뒤집었다는 뜻이다. 

처음 배울때 선형대수만큼 짜증나는 것은 없다!

 

덧샘과 곱샘만 있음에도 당장 위에 수식만 봐도 머리가 돌아버릴 것 같다. 

 

그런데 저런 모든 과정을 ∑ 기호를 쓰지 않고 아래와 같이 단순한 기호로 표시할 수 있다는 것은 정말 큰 장점이다.

 

심플 그 자체

처음에만 위에 기나긴 수식을 하나 하나 따라가면서 이해하고, 그 이후로는 각 matrix의 차원만 봐도(얘가 j x k 인지 k x j 인지) 전혀 문제가 없으니 걱정 마시라!

 

우리가 해야할 부분은 dot product를 언제 써야하는지 아는 것과, dot product를 낼 두 matrix의 차원을 맞춰주는 것 뿐이다. 

import numpy as np

# Constants
num_input_node = 4
num_output_node = 3
learning_rate = 0.1
num_epoch = 100

# Variables
weights = np.random.rand(num_input_node + 1, num_output_node) * 2 -1
# rand 함수는 0~1 사이 값을 주기에 x2-1을 하면 -1과 1 사이의 값이 나온다.

##############################여기부터##############################################

# Feed Forward
input_node = np.vstack([[[1]],x]) # input vector x 위에 bias를 위한 원소 1을 추가해준다.
a = np.dot(weights.T, input_node)

Backpropagation 계산

다음 단계는 총 k개의 perceptron마다 나온 a 값을 실제로 나와야 하는 값이랑 비교하는 것이다. 

 

desired output의 d를 따서 d라고 부르겠다. 

 

Error = desired output(d) - actual output(a)

값이 k x 1 의 형태로 나올 것이기에 desired output도 똑같이 모든 perceptron, 혹은 output node의 desired output 값을 column vector 화 해서 서로 빼주면 k x 1 의 형태로 error를 구할 수 있다. 

 

 

4개의 input node가 있는 perceptron. error 값 -2.173을 weight에 반영해주어야 한다. 

예로 위 처럼 input node가 총 4개 있는 perceptron은 총 5개의 weight 값(4+1)가질 것이다. 

 

feedforward 계산에 의해서 actual output은 3.173이 나왔다. 

 

desired output이 1이라고 할 때 위의 Error 정의대로라면 Error는 -2.173이 나오며 이는

 

"실제 나오는 값이 desired 보다 훨씬 크니, weight 값을 - 방향으로 움직여라(=줄여라)"

 

를 의미한다.

 

문제는 이 -2.173을 5개의 weight 값에 모두 동일하게 반영하면 안되고, input node의 값에 차등적으로 반영을 해야한다는 것이다. 

 

Error를 만드는데 기여도가 높은 node의 weight 일 수록 weight 변경을 많이 해야한다. 

 

bias를 제외한 첫 번째 node의 경우 7.7의 값이 들어왔다. 그에 비해서 두 번째 node는 0.3이 들어왔다. 

 

당연히 저 -2.173이라는 큰 error 값에 기여한 부분이 첫 번째 node가 두 번째 node보다 크므로, 더 큰 값을 weight 에서 빼주어야 할 것이다. 

 

어짜피 learning rate 때문에 한번에 많은 양의 weight 변화가 생기지는 않을 것이므로, 이러한 Error의 기여도의 차이를 단순히 error에 input node의 값을 곱해주는 식으로 계산하면 편하다. 다음과 같이 말이다. 

 

앞에 곱해진 0.1은 learning rate 이다. 

똑같은 짓을 k개의 perceptron에 대해 진행해야 하는데 이 역시 dot product로 할 수 있다. 

 

살짝 편법이기는 하지만, 궁극적으로 우리가 알고 싶은건 (j +1 x k) 형태로 있는 weight의 각각의 원소에 얼마만큼의 값을 빼주어야 하는지 이므로 weight 변화량 또한 (j +1 x k)형태일것이다.

 

bias를 포함한 input node => (j+1 x 1)
Error => k x 1
원하는 형태 => (j +1 x k)

어떻게 dot product를 계산해야할지 알겠는가?

 

bias를 포함한 input node와 Error의 행과 열을 바꾼 값을 서로 dot product 해주면 

(j+1 x 1) dot 1 x k  =j +1 x k 가 된다.

 

import numpy as np

# Constants
num_input_node = 4
num_output_node = 3
learning_rate = 0.1
num_epoch = 100

# Variables
weights = np.random.rand(num_input_node + 1, num_output_node) * 2 -1
# rand 함수는 0~1 사이 값을 주기에 x2-1을 하면 -1과 1 사이의 값이 나온다.

# Feed Forward
input_node = np.vstack([[[1]],x]) # input vector x 위에 bias를 위한 원소 1을 추가해준다.
a = np.dot(weights.T, input_node)

##############################여기부터##############################################

# Backpropagation
Error = desired_output - a
new_weights = weights - learning_rate*( np.dot(input_node, Error.T) )

 

이러한 과정을 모든 dataset에 대해서 epoch 번 만큼 반복해 주면 된다.

 

sklearn에 있는 가장 유명한 dataset인 iris 데이터를 사용해서 위의 모든 내용을 코드로 바꾸면 아래와 같다. 

 

코드가 전부 돌아가면 정확도 값이 나올 것이다.

 

import numpy as np
from sklearn import datasets

data = datasets.load_iris()
X = data.data
y = data.target

# Constants
num_input_node = 4
num_output_node = 3
learning_rate = 0.01
num_epoch = 1000

# Variables
weights = np.random.rand(num_input_node + 1, num_output_node) * 2 -1
# rand 함수는 0~1 사이 값을 주기에 x2-1을 하면 -1과 1 사이의 값이 나온다.
for epoch in range(num_epoch):
    for sample,target in zip(X,y):
        # Make input node to column vector
        x = np.reshape(sample, [4, -1])
        # Feed Forward
        input_node = np.vstack([[[1]],x]) # input vector x 위에 bias를 위한 원소 1을 추가해준다.
        a = np.dot(weights.T, input_node)

        # Make desired output to column vector
        desired_output = np.zeros([3,1])
        desired_output[target] = 1

        # Backpropagation
        Error = desired_output - a
        new_weights = weights + learning_rate*( np.dot(input_node, Error.T))
        weights = new_weights

score = 0
for sample,target in zip(X,y):
    # Make input node to column vector
    x = np.reshape(sample, [4, -1])
    # Feed Forward
    input_node = np.vstack([[[1]], x])  # input vector x 위에 bias를 위한 원소 1을 추가해준다.
    a = np.dot(weights.T, input_node)
    score += int(np.argmax(a) == target)
print(score / len(X))

 

이대로 코드를 짜면 정확도 값이 0.66을 넘기는 것을 본 적이 없다. 

 

이는 개념의 단순화를 위해서 activation function을 쓰지 않았기 때문이다. 

 

activation function을 쓰지 않으면 actual output 값이 한없이 크거나 작게 나오는 것이 가능하고, 이는 곧 한없기 크거나 작게 weight 값의 변경이 가능하다는 것이다. 

 

실제로 위에서 learning rate 을 0.01로 사용했는데, 이보다 커지면 어느순간 최종 weight 값들이 inf (무한대)로 뜨기 시작한다.

 

activation function을 쓰면 극단적인 weight 변화라는 문제를 해결할 수 있지만, Error를 weight 값에 반영해 주는 방법을 바꿔주어야 한다. 

 

여기서부터가 가장 어려운 개념이다. 

 

Partial Derivative (편미분)과 Error

최대한 쉽게 설명하려고 노력하겠다.

 

우리가 결국 Perceptron을 만들면서 궁극적으로 원하는 것은 단 하나다.

 

Weight 값을 변화, 즉 증가시키거나 감소시켜서 Error를 줄이는 것

"변화" 라는 단어만 나오면 수학에서 바로 튀어 나오는 것이 바로 미분이다. 

 

대체로 미분을 배울때 미분을 계산하는 부분에 많은 시간을 써서 그런지 미분이 의미하는 것을 잊는 경우가 있다. 

 

특정 함수 f(x)를 미분해서 새로운 함수 f'(x)를 만들고, x에 특정한 값, 예를들어 3, 을 넣어주면 f(x) 함수의 숫자 3에서의 기울기를 알려준다. 

 

f'(3)이 양수이면, f(3)인 지점에서 기울기가 오른쪽으로 증가한다는 뜻이니, f(3+아주 작은 수)의 값이 f(3)보다 클 것이다.

 

반대로 음수이면, f(3+아주 작은 수)의 값이 f(3)보다 작을 것이다.

 

만약에, X축이 weight, Y축이 Error인 아래의 좌측과 같은 그래프가 있다면 가장 적절한 weight 값은 어디일까?

 

선택한 weight 값에 따른 Error의 변화

당연히 중심부근에 있는 Error가 가장 작아지는 지점이다. 

 

하지만 이런 그래프를 쉽게 그릴 수 있었다면 고등학교 2학년 방학숙제로 알파고를 만드는 내용이 나갔을 것이다. 

 

대신 만약에 오른쪽과 같이 특정 weight 지점에서 weight-Error 그래프의 기울기라도 알 수 있으면 어떨까?

 

위의 예처럼 그래프의 기울기가 양수라면, weight을 증가시키면 Error가 증가하니 weight 값을 살짝 감소시키면 적어도 지금보다는 Error가 작아질 것이라고 확신할 수 있다. 

 

 

또한 weight 값을 얼마나 감소 시켜야 할지도 대략 알 수 있다.

 

아래의 그림 모두 미분값의 기울기가 음수라 weight을 증가시키는 것이 Error를 낮출 가능성이 높다. 

 

어느 경우 weight를 더 많이 증가시켜야 할까?

 

좌측의 경우 weight이 커지면 슬슬 그래프가 평평해질 것 같다. 

 

그에 비해서 우측의 경우는 신나게 아래로 내려가는 중인 것 같다. 

 

이런 경우 우측의 경우 많이 weight 값을 증가시켜도 될 것 같지만, 좌측의 경우 너무 많이 weight 값을 증가시켰다가는 Error가 더 올라가버릴지도 모른다. 

 

즉, weight은 Error를 weight로 미분한 값의 반대방향으로 움직어야 한다. 

 

길어진 n 모양의 기호는 eta 이며 learning rate을 뜻한다. 

 

W의 변화량 = learning rate * (W에 대한 Error의 기울기) 의 반대

 

 

여기까지 이해가 되었다면 Error를 weight로 미분한 값만 알면 weight을 어떻게 바꿔야 할지 알 수 있다는 것을 눈치챘을 것이다. 

 

기울기를 구하는 것이니 미분을 쓰면 될텐데, 편미분은 또 무슨 말일까?

 

편미분은 미분과 다른 것이 없다. 단지 미분을 하는데, 다른 변수는 다 무시해버리고 관심있는 변수로만 미분을 한다는 것이다. 

 

예를들어 아래와 같은 수식이 있다고 하자.

 

x는 그렇다고 해도 그 뒤가 무시무시하다.

 

함수 f는 x,y,z의 세 변수에 대한 복잡한 함수이다. 

 

이를 x에 대해서 편미분을 하라는 것은 x 이외의 변수는 모두 상수로 보고 x에 대해서만 미분을 하면 된다. 

 

뒷쪽 항에는 x가 없으므로 x에 대해서 편미분 하면 통째로 사라진다.

참고로 편미분의 기호는 d 가 아닌 6을 거꾸로 쓴 듯한 기호로 표기한다.

 

편미분의 의미는 다른 변수들은 내 알 바 아니고 원하는 변수의 증감이 전체 함수의 기울기에 어떤 영향을 미치는지를 알려주는 것이다. 

 

결론적으로 편미분 이야기를 꺼낸 이유는, weight의 변화에 따라 Error가 어떻게 달라지는지를 알기 위함, 즉, 아래의 값을 구하면 weight를 올릴지 내릴지 알 수 있다.

 

양이라면 weight을 줄이고, 음이라면 weight를 늘리고.

partial derivative의 또 다른 특성 중 하나는 chain rule 이다.

 

미분 가능한 함수들을 서로 연달아 배치해서 계산을 하는 방법인데, 수학적으로 말하자면 이 chain rule이 있기에 multi layer perceptron이 성립할 수 있다. 

 

위와 같이 partial derivative 하나를 두 개로 쪼개서 계산할 수 있다. 

 

그래서 SLP에 이를 적용해보자. 

 

뭔가 이상하다. 

 

저대로 가면 W가 있는 항이 우측 항 밖에 없으니 상수인 desired input은 W로 미분하면 사라진다. 

 

Error function의 정의가 partial derivative 를 사용한 weight update방식에 맞지 않아서 그렇다. 

 

desired output과 actual output의 차이의 제곱을 2로 나눈 것을 Error로 사용하기로 하면 문제가 해결된다. 

 

어? 맘대로 Error function을 바꿔도 되나?

 

상관 없다. desired output과 actual output의 차이가 줄어들 수록 Error function의 값이 줄어들기만 하면 어떤 Error function을 써도 문제가 없다. 

 

결과는 다음과 같다. 

 

(d-a)는 Error, 그 뒤의 항은 input node의 값이다. 

 

정확하게 우리가 위에서 본 식이다. 

 

눈치챘을 수도 있지만 Error function 앞에 붙여둔 1/2는 정말 아무 의미없는 숫자다. (1/100 로 해도 된다.)

 

대신 1/2로 해두면 미분할 때 위에 있던 2가 똑 떨어져 나오기 때문에 위처럼 식이 깔끔해질 수 있다.

 

Single Layer Perceptron - with activation function

activation function은 input node와 각각의 weight 들의 곱의 합, 즉 a 값이 특정 범위 내에 있도록 해주는 함수이다. 

 

가장 많이 사용하는 함수는 sigmoid, tanh, ReLU function 이며 output node의 값이 극단적으로 나오지 않도록 제한해주는 역할을 한다. 

 

빨강 : sigmoid, 파랑 : tanh, 보라 : ReLU

X 값에 따라 제한된 범위에서 Y값이 나오도록 하는 것 외에 activation function에는 한가지 요구사항이 붙는다. 

 

바로 미분 가능성이다. 

 

미분이 가능해야 나중에 partial derivative를 구할 수 있기에 위의 세 그래프 모두 X에 대해서 미분이 가능하다. 

 

이 이후로 부터는 activation function으로 sigmoid 함수를 사용하도록 하겠다.

 

 

이 sigmoid 함수는 미분을 하면 재미있는 모습을 보여주는데, sigmoid 함수 y=f(x)는 미분을 하면 y(1-y) 로 표현이 된다.

 

미분하기 전 값으로 미분 후의 값을 표현할 수 있는 것이다.

 

위에서 언급한 tanh 함수도 미분을 하면 자기 자신으로 표현을 할 수 있으며, 이런 특성은 이후 아주 편리하다.

 

Feed Forward 계산

activation function이 없는 경우와 똑같다.

 

단지 node와 weight의 dot product를 바로 output으로 쓰는 것이 아니라 이 값을 activation function에 집어넣어서 나온 값을 output으로 사용한다.

 

아래에서 각 node의 weighted sum을 구한 뒤, sigmoid 함수에 넣어서 0.9598 이라는 값을 뽑아내는 것을 볼 수 있다.

 

위에서 사용한 코드의 맨 아래 한 줄만 추가하면 feed forward 파트는 끝이다. 

 

import numpy as np

# Constants
num_input_node = 4
num_output_node = 3
learning_rate = 0.1
num_epoch = 100

# Variables
weights = np.random.rand(num_input_node + 1, num_output_node) * 2 -1
# rand 함수는 0~1 사이 값을 주기에 x2-1을 하면 -1과 1 사이의 값이 나온다.

# Feed Forward
input_node = np.vstack([[[1]],x]) # input vector x 위에 bias를 위한 원소 1을 추가해준다.
a = np.dot(weights.T, input_node)
##############################여기부터##############################################
output_node = 1 / (1+np.exp(a))

Backpropagation 계산

위에서 언급한 partial derivative를 쓰면 Error에 대한 weight의 영향을 아래처럼 계산할 수 있다.

 

참고로 a는 input node에 각각 해당하는 weight 값을 곱하고 합한 값

 

y는 이 a를 activation function을 통과한 값이다. 

 

x에 weight을 곱하고 합하기(=a). 이 결과를 sigmoid 함수에 넣기(=y)

 

마지막 식을 차원에 맞춰서 정렬한 후, 코드로 바꾸면 아래와 같다.

 

import numpy as np

# Constants
num_input_node = 4
num_output_node = 3
learning_rate = 0.1
num_epoch = 100

# Variables
weights = np.random.rand(num_input_node + 1, num_output_node) * 2 -1
# rand 함수는 0~1 사이 값을 주기에 x2-1을 하면 -1과 1 사이의 값이 나온다.

# Feed Forward
input_node = np.vstack([[[1]],x]) # input vector x 위에 bias를 위한 원소 1을 추가해준다.
a = np.dot(weights.T, input_node)
output_node = 1 / (1+np.exp(a))

##############################여기부터##############################################

# Backpropagation
delta = -(desired_output - output_node) * output_node * (1-output_node)
new_weights = weights + learning_rate*( np.dot(delta, input_node.T).T )

 

코드 중간에 delta 라는 변수를 따로 만들고 나중에 bias를 포함한 input node의 값을 곱해주었다. 

 

이를 반영해서 돌아가는 iris 코드는 다음과 같다.

 

import numpy as np
from sklearn import datasets

data = datasets.load_iris()
X = data.data
y = data.target

# Constants
num_input_node = 4
num_output_node = 3
learning_rate = 0.1
num_epoch = 1000

# Variables
weights = np.random.rand(num_input_node + 1, num_output_node) * 2 -1
# rand 함수는 0~1 사이 값을 주기에 x2-1을 하면 -1과 1 사이의 값이 나온다.
for epoch in range(num_epoch):
    for sample,target in zip(X,y):
        # Make input node to column vector
        x = np.reshape(sample, [4, -1])
        # Feed Forward
        input_node = np.vstack([[[1]],x]) # input vector x 위에 bias를 위한 원소 1을 추가해준다.
        a = np.dot(weights.T, input_node)
        output_node = 1 / (1 + np.exp(-a))

        # Make desired output to column vector
        desired_output = np.zeros([3,1])
        desired_output[target] = 1

        # Backpropagation
        delta = -(desired_output - output_node) * output_node * (1-output_node)
        new_weights = weights - learning_rate*( np.dot(delta, input_node.T).T)
        weights = new_weights

score = 0
for sample,target in zip(X,y):
    # Make input node to column vector
    x = np.reshape(sample, [4, -1])
    # Feed Forward
    input_node = np.vstack([[[1]], x])  # input vector x 위에 bias를 위한 원소 1을 추가해준다.
    a = np.dot(weights.T, input_node)
    output_node = 1 / (1 + np.exp(-a))
    score += int(np.argmax(output_node) == target)
print(score / len(X))

Multi Layer Perceptron

편미분과 말도 안되는 선형대수를 뚫고 위 까지 이해를 했다면, MLP도 정말 쉽게 넘어갈 수 있다. 

 

중간에 back propagation에 한 스텝이 추가될 뿐이다. 

 

node가 총 3개가 되고 이에따라 weight matrix도 두개가 필요하다. 

 

input, hidden, output으로 명명하면 혼돈의 여지가 있어서 순서대로 n1, n2, n3로 명명하고 weight 들은 첨자로 어느 노드 사이에 있는 weight 인지 달아두었다. 

 

Feed Forward 계산

import numpy as np

# Constants
num_n1_node = 4
num_n2_node = 3
num_n3_node = 4
learning_rate = 0.1
num_epoch = 100

# Variables
W_12 = np.random.rand(num_n1_node + 1, num_n2_node) * 2 - 1
W_23 = np.random.rand(num_n2_node + 1, num_n3_node) * 2 - 1

# Feed Forward
n1 = np.vstack([[[1]],x]) # input vector x 위에 bias를 위한 원소 1을 추가해준다.
a2 = np.dot(W_12.T, n1)
n2 = 1 / (1 + np.exp(-(a2)))
n2 = np.vstack(([[1]], n2))
a3 = np.dot(W_23.T, n2)
n3 = 1 / (1 + np.exp(-(a3)))

 

Backpropagation 계산

W23의 계산

W23은 output node인 n3와 직접 연결되어 있기에 Single Layer 처럼 구하면 된다.

 

문자들만 달라졌지 위에서 작성한 식과 똑같다. 

 

W12의 계산

 

W23의 경우는 바로 output node와 연결이 되어 있어서 어느 부분을 고치면 되는지 직관적으로 알 수 있는데, W12의 영향력은 W23을 한번 더 지나서 나타나기에 중간 연결고리를 모른다.

 

대신 우리는 각각의 값들의 아래의 연결고리를 안다.

 

a2랑 W12가 같이 있는 식이 있고, a2 & n2 | n2 & a3 | a3 & n3 | Error 와 n3가 같이 있는 식도 알고 있다.

 

따라서 이러한 연결구조를 활용해서 chain rule을 통해 아래의 식을 구할 수 있다. 

 

초록색 부분은 중간단계를 생략하고 바로 수식을 적었는데 앞에서 계산한 W 23에 같은 부분이 등장하기 때문이다.

마지막 식의 첫 파란 항에서 W23 위에 *이 붙어있는데, 이는 첫째행을 제외한 W23을 말한다.

 

이 행을 지워주는 이유는 두 가지 방법으로 설명할 수 있는데, 

 

일단, 편미분을 bias를 포함한 n2로 하는 것이 아니라 n2로만 하기에 Weight에서 bias 관련 부분을 빼고 나머지 값만 써주는 것이라고 설명할 수 있다. 

 

다른 방법으로는 W23의 첫째 행에는 n2의 bias와 n3를 연결하는 weight 값이 들어있는데, n1과 n2의 bias는 서로 연결되어 있지 않으므로 n2의 bias 관련 정보는 빼주는 것이라고도 설명할 수 있다. 

 

 

*을 붙인 W에서는 맨 윗행의 node2:bias와 연결된 weight 들이 빠져있다.

 

겨우 끝났다. 

 

이 모든 과정을 코드로 정리하면 아래와 같다.

 

import numpy as np

# Constants
num_n1_node = 4
num_n2_node = 3
num_n3_node = 4
learning_rate = 0.1
num_epoch = 100

# Variables
W_12 = np.random.rand(num_n1_node + 1, num_n2_node) * 2 - 1
W_23 = np.random.rand(num_n2_node + 1, num_n3_node) * 2 - 1

# Feed Forward
n1 = np.vstack([[[1]],x]) # input vector x 위에 bias를 위한 원소 1을 추가해준다.
a2 = np.dot(W_12.T, n1)
n2 = 1 / (1 + np.exp(-(a2)))
n2 = np.vstack(([[1]], n2))
a3 = np.dot(W_23.T, n2)
n3 = 1 / (1 + np.exp(-(a3)))

##############################여기부터##############################################

# Backpropagation
delta23 = -(desired_output - n3) * n3 * (1-n3)
W_23 = W_23 - learning_rate * np.dot(delta_23, n2.T).T

# 위에서 n2 변수를 bias를 포함해서 정의했기에 여기서는 [1:,:] 인덱싱을 사용해 맨 윗행 값을 뺀다. 
# 또한 W_23에서도 맨 윗행 값을 뺀다.
delta_12 = np.dot(W_23[1:, :], delta_23) * n2[1:, :] * (1 - n2[1:, :])
W_12 = W_12 - learning_rate * np.dot(delta_12, n1.T).T

 

iris 데이터에 적용한 코드는 아래와 같다. 

 

import numpy as np
from sklearn import datasets
from sklearn import model_selection

data = datasets.load_iris()
X = data.data
y = data.target

# Select node
num_n1_node = 4
num_n2_node = 12
num_n3_node = 3

# Generate model
W_12 = np.random.rand(num_n1_node + 1, num_n2_node) * 2 - 1
W_23 = np.random.rand(num_n2_node + 1, num_n3_node) * 2 - 1

num_epoch = 1000
learning_rate = 0.2

for epoch in range(num_epoch):
    for sample, target in zip(X,y):
        # Forward
        n1 = np.reshape(np.append([1], sample), [num_n1_node + 1, -1])
        a2 = np.dot(W_12.T, n1)
        n2 = 1 / (1 + np.exp(-(a2)))
        n2 = np.vstack(([[1]], n2))
        a3 = np.dot(W_23.T, n2)
        n3 = 1 / (1 + np.exp(-(a3)))

        # Backward
        DesiredOutput = np.zeros([num_n3_node, 1])
        DesiredOutput[target] = 1
        Error = 0.5 * (DesiredOutput - n3) ** 2
        delta_23 = -(DesiredOutput - n3) * n3 * (1 - n3)
        W_23 = W_23 - learning_rate * np.dot(delta_23, n2.T).T

        delta_12 = np.dot(W_23[1:, :], delta_23) * n2[1:, :] * (1 - n2[1:, :])
        W_12 = W_12 - learning_rate * np.dot(delta_12, n1.T).T

score = 0
for sample, target in zip(X,y):
    n1 = np.reshape(np.append([1], sample), [num_n1_node + 1, -1])
    y1 = np.dot(W_12.T, n1)
    n2 = 1 / (1 + np.exp(-(y1)))
    n2 = np.vstack(([[1]], n2))
    y2 = np.dot(W_23.T, n2)
    n3 = 1 / (1 + np.exp(-(y2)))
    score += int(np.argmax(n3) == target)
print(score / len(X))

아직 이것보다 더 쉽게 Multi Layer Perceptron을 설명하는 글을 보지 못했다.

Multi layer를 도입하기 위해서는 partial derivative 개념은 필수이며, 2차원 weight matrix에 대한 연산을 설명하기 위해서는 Sigma로 도배하거나, 선형대수로 머리를 터뜨려야 한다. 

 

그나마 선형대수를 사용하는 것이 겉으로 보기에 아주 깔끔하고 정돈되어 있어서 굳이 이 방법을 사용했다. 

 

하나 고백하자면 matrix와 matrix의 partial derivative는 제대로 정의가 되어있지 않다고 한다. (wiki 참고)

 

따라서 matrix calculus를 제대로 배운 사람이라면 말도 안되는 transpose, 맘대로 어기는 Commutative property에 혀를 찰 것이며 제대로 계산을 하기 위해서는 다른 방법을 써주어야 하는 것 같다. 

 

matrix calculus 부분은 다음을 위한 과제로 남겨두려고 한다. 

 

어찌되었건, dimension만 제대로 맞춰주면 위의 코드는 돌아간다!

 

마치며

 

기계학습에 대한 대중들의 관심이 높아져서 그런지 관련 사기꾼들도 같이 늘어나는 것 같다. 

 

내 연구 프로젝트에 대해서 생뚱맞게 4차 산업혁명이나 인공지능과 관련있는 점이 있냐고 물어보는 사람들이 있는가 하면, 기계학습과 인공지능의 차이도 모르는 사람들이 아무곳에나 "자율형", "인공지능" 등의 말을 붙이고 다닌다. 

 

물론, 어떠한 학문이든 진입 장벽은 낮을수록 좋고, 누구나 쉽게 분야에 참여해 배워보고, 그 유용성을 누려야 한다고 생각한다. 

 

하지만 가상악기와 MIDI를 사용해서 바이올린을 연주하는 사람이 "나는 바이올린을 잘 안다!" 라고 말하면 안되듯이 남이 만들어 놓은 코드 몇 줄로 classifier를 만들고 기계학습을 잘한다고 말하면 안된다. 

 

더욱이 기계학습을 연구에 사용하거나, 실무에 사용하는 경우 적어도 기저 개념을 한번이라도 유도해보지 않으면 주의점과 한계들을 놓쳐서 치명적인 오류를 범할 수 있을 것이다. 

 

자신과 관련된 분야에 대중의 관심이 많아질 수록, 보다 겸손하고 신중한 자세를 취하는 것이 옳은 것 같다.

 

 

- 부족한 글 읽어주셔서 감사합니다. 

- 오류나 오타가 있으면 댓글로 감사히 받겠습니다. 

Posted by Admin Knowblesse
0 Comments

이 시리즈를 포스팅하게 된 계기는 한달전부터 Ubuntu 를 사용을 시작한 것이다.

vim과 터미널 명령어들을 배우면서 슬슬 GUI보다 CUI에 익숙해지고 있어서 git도 이제 GUI 프로그램을 사용하지 않고 명령어를 외어서 사용하려는 중이다. 하지만 git에 입문하는 처음이라면 꼭 GUI 프로그램을 사용해라.하는 것을 추천한다.

대체 누가 git 입문 책에서 CUI로 알려주는지. git은 꼭 GUI로 시작해라.

 

처음에는 branch라는 개념이 직관적으로 다가오지 않으며, 여러 branch가 꼬이기 시작하면 머리도 같이 꼬일 수 있다. 

또한 아무리 CUI가 입력하기엔 편해도 visualize 하는 면에 있어서는 GUI를 이길 수 없다. 나는 CUI에 익숙해져도 GUI git을 지우지는 않을거라고 확신한다.

 

애용하는 GitKraken에서 제공하는 배경화면이다. 예쁘긴 하지만 실제로 branch가 이렇게 꼬이면.....

GUI로 git을 사용할 수 있게 해주는 프로그램은 그렇게 많지 않다. 

처음에는 GitHub에서 자체제작한 GitHub Desktop을 사용했는데 깔끔한 그래픽의 군더더기 없는 디자인이라 마음에 들었지만 git의 모든 기능을 구현하지 않은 것 같고, 전반적으로 UI가 휑한 느낌을 주었다.

단순한 기능들만 사용한다면 추천하기는 한다. 

 

GitHub Desktop

이후로 본격적으로 git을 사용하게 만든 장본인은 Sourcetree이다. GitHub Desktop과는 다르게 다양한 기능들을 구현을 해두었고, 구현한 기능들에 비해 디자인도 깔끔하게 만들어서 한동안은 정말 잘 썼으나... 2016년즈음 자꾸 내부 프로그램 문제가 발생해서 설치-재설치, GitHub Desktop으로 갈아탔다 다시 오기를 몇 번.. 아주 지쳐버렸다. 

지금은 그래도 그때보다는 더 안정화 되어있을 것이다. 하지만 돌아갈 생각은 없다. 

 

Sourcetree 한눈에 봐도 뭐가 많다.

시커먼 화면을 좋아해서 그런지 한번 적응하고 나서부터는 바꿀 생각을 전혀 안하고 있다. 

UI는 위의 두 프로그램의 딱 중간정도지만 복잡한 기능들도 다 구현이 되어있고 아직까지 한번도 크래시가 난적이 없다.

의외로 이 프로그램에 대한 소개가 별로 없는 것 같기에 프로그램에 대한 애정을 담아 이후 포스팅부터는 이 프로그램을 기준으로 설명하겠다. 

 

Gitkraken. UI의 복잡도가 딱 GitHub Desktop과 Sourcetree의 중간이다.

2017년 이후 거의 3년간 문제없이 쓰고 있는 것은 GitKraken이다. 

 

 

마무리

아마 직접 git을 설치하는 일은 없을 것이다. 혹시 리눅스 유저라면 이미 git이 기본으로 깔려있을 것이고, 윈도우 유저라면 바로 GUI 프로그램인 GitKraken을 깔자. 이 프로그램 역시 학생에게 무료로 Pro 버전을 제공한다. 

https://www.gitkraken.com/student-resources

 

Free Developer Tools for Students | GitKraken

Students can get a GitKraken Pro account free as part of the GitHub Student Developer Pack. The Git GUI client makes learning Git easier by providing a visual, intuitive experience. Glo Boards are great for working with student teams to track project progr

www.gitkraken.com

이전 포스트에서 GitHub에 가입을 하고, 이번 포스트에서 GitKraken을 설치했다면 이제 준비는 끝이다. 

다음 포스트부터 바로 실제 git에 구조와 사용법에 대해서 작성하도록 하겠다. 

Posted by Admin Knowblesse
0 Comments

원래 두 번째 글은 왜 git 이 필요한지에 대해서 작성하려고 했으나 계획을 변경했다. 

 

첫째, 일단 난 왜 git이 필요한지 안다. 굳이 여기서 간증글을 쓸 시간은 없다.

둘째, 지금 이 글을 보는 사람이 git의 필요성을 모르고 들어왔을 거라고 생각하지 않는다. 

셋째, 행여 git의 필요성을 모르는 사람이 들어왔으면 아마 아직 짠 코드 양이 적어서 그럴 것이라고 추측한다. 
코딩을 더 하다가 오면 생각이 바뀌지 않을까.

 

그럼 바로 git과 GitHub의 관계부터 짚고 넘어가겠다.

 

git

git 은 버전관리(version-control) 프로그램이다.

버전 관리 프로그램은 말 그대로 파일의 "버전"을 관리해주는 프로그램이다. 

처음에 이 말을 들었을 때는 "뭔 버전? 워드 2013 뭐 이런 버전인가?" 했는데 다음 짤을 보고 한 번에 이해가 되었다. 

 

아... 이 버전~

한컴오피스나 Word의 검토 기능을 자주 사용해본 사람이라면 다음 그림도 익숙한 화면일 것이다. 

수정 전 내용을 보여주는 것과 함께 누가 어디를 어떻게 수정했고 왜 수정했는지에 대한 문구를 볼 수 있다. 

버전 관리 프로그램의 주된 목적은

  1. 첫 번째 사진과 같이 같은 파일을 여러 번 다양한 사람에 의해서 수정을 해야 하는 경우 각각의 파일들을 최신순으로 추적해 주며
  2. 두 번째 사진과 같이 각 파일이 이전 버전들과 어떻게 달라졌는지를 비교해주는 것이다. 

git은 이러한 버전 관리 프로그램의 한 종류이다. 

 

뭐 대충 2000년대 전에 개발되었을 거고 2005년에 개발이 되었고, 개발자는 리눅스의 개발자 Linus Torvalds이며 현재는 일본인 개발자 Junio Hamano에 의해 유지되고 있다. 

 

버전 관리 프로그램의 종류는 git 외에도 수 십 종이 있으나 현재 적극적으로 사용되고 있는 것은 많지 않고 굳이 하나를 더 알아야겠다면 CVS랑 Subversion 정도. CVS, Subversion, git 모두 오픈소스에 누구나 쉽게 사용할 수 있지만, git은 모든 사용자가 데이터를 가지고 있지만 CVS와 Subversion은 중앙집중형 시스템이라는 점에서 다르다.

 

기업에 들어가면 자체 버전관리 시스템을 사용하게 될 것이고, 그 외에는 거의 대부분이 git을 사용하고 있다고 생각해도 무방하다. 

 

하지만 이러한 버전 관리를 포함하는 모든 데이터 관리의 핵심 기능이 하나 빠졌다. 

 

바로 백업과 공유이다. 

 

 

GitHub

GitHub는 git을 더욱 손쉽게 사용할 수 있도록 해주는 온라인 서비스이다.

모든 프로그래머는 고양이를 좋아한다. (아마?)

 

GitHub는 git이 나온 지 3년 뒤에 론칭했다. git 프로그램이 이렇게 인기 있는 버전 관리 소프트웨어로 성장하도록 만든 중요 동력원 중 하나가 아닐까 하고 생각할 정도로 다양한 기능들을 제공하며 무엇보다 remote repository를 무료로 제공해준다. 

 

git은 앞서 설명했듯이 중앙집중형인 CVS와 다르기에 모든 데이터가 로컬 컴퓨터에 저장이 된다.(local repository) 때문에 만일 로컬 컴퓨터에 문제가 생기거나 데이터가 있는 폴더를 실수로 홀라당 날려먹으면 버전 관리고 뭐고 끝이 난다. 

git에서는 이러한 문제를 원격 저장소, remote repository라는 것을 사용해서 해결할 수 있는데, 말 그대로 로컬에 있는 데이터를 local이 아닌 다른 컴퓨터 (주로 클라우드 서버)에 저장하여서 데이터를 백업해둘 수 있다. 

 

하지만 이를 단순히 "백업"이라고 말하기에는 마음이 편하지 않다. 심지어 GitHub의 Help page에 들어가면 "Git is not adequately designed to serve as a backup tool."이라고 언급을 하고 있다. 물론 원격 저장소를 사용하면 로컬에 있는 데이터를 백업해두고, 로컬에 문제가 있을 때 다시 복구할 수 있지만, 다른 사용자와 코드를 공유하거나 완성된 프로그램을 배포하는 등 훨씬 다양한 기능을 수행할 수 있다.

 

굳이 백업이라는 단어를 써서 원격 저장소를 설명하자면, "소스코드에 특화된 강화된 기능을 가지는 공개용 백업"?

 

몇 가지 GitHub의 기능을 나열하면 아래와 같다.

  • 원격 저장소 기능
  • Issues : 버그 신고 혹은 기능 추가 요청. "이 기능 좀 넣어주세요~", "이거 안 되는데요?"
  • Pull requests : 다른 사용자가 직접 코드를 수정해서 원격 저장소 오너에게 이 코드를 사용해달라고 제안하는 기능.
  • Wiki : 원격 저장소에 있는 프로그램에 대한 위키 페이지 운영 기능.
  • Releases : 배포용 프로그램 생성 기능.

이 모든 것을 무료로 제공 가능한 이유는 단순한 텍스트 파일인 소스코드의 크기가 크지 않기 때문이다. 

개발자가 한평생 작성하는 소스코드는 CD 한장을 채우지 못한다.

때문에 GitHub에 올리는 파일의 크기는 아래와 같은 제약을 받는다.

각 파일별 최대 크기 100MB (인터넷 브라우저로 업로드시 25MB)
권장 원격 저장소 크기 1GB 미만
최대 원격 저장소 크기 100GB*
단 1GB가 넘어가면 지속적으로 저장소 크기를 줄이라고 연락이 옴.

한마디로 소스코드 외에 다른 것들은 가능하면 올리지 말라는 것이다. 

 

예전에는 사전에 지정한 사람만 들어올 수 있는 비공개 원격 저장소를 무료 계정에서는 5개로 제한했었는데 이 제한은 없어진 모양이다. 월 USD7을 내면 Pro 계정으로 업그레이드가 가능한데 이마저도 학생들에게는 무료로 제공하고 있다. 

아래 링크를 참고할 것.

https://education.github.com/pack

 

GitHub Student Developer Pack

The best developer tools, free for students. Get your GitHub Student Developer Pack now.

education.github.com

 

물론 Github가 git을 위한 유일한 원격 저장소 서비스 제공자는 아니다.

 

GitLab, Bitbucket 등 다양한 업체가 있으나 둘러본 적은 없다.

 

따라서 앞으로의 글도 GitHub에 초점을 맞춰서 작성할 예정이다. 

 

잘못된 정보는 댓글로 지적해주시면 정말 감사하겠습니다!
Posted by Admin Knowblesse
0 Comments